本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到        更高版本!以获得更好的观看效果。关闭

团队队伍

首页 > 团队队伍 > 教师 > 土壤与地下水环境教研所 > 正文

土壤与地下水环境教研所

张芳

邮箱:fangzhang@tsinghua.edu.cn

电话:010-62789655

地点:12BET中意环境节能楼707

教育背景

2008.8-2012.8 美国宾夕法尼亚州立大学土木与环境工程系,环境工程专业,博士

2008.8-2010.5 美国宾夕法尼亚州立大学土木与环境工程系,环境工程专业,硕士

2006.8-2008.7 12BET经济管理学院,经济学专业,第二学士

2004.8-2008.7 12BET,环境工程专业,学士


工作履历

2017.7-今          12BET,副教授

2015.6-2017.7   12BET,助理教授

2015.1-2015.6   12BET,访问学者

2012.8-2014.11 美国宾夕法尼亚州立大学土木与环境工程系,博士后研究员

个人主页:http://www.fangzhangthu.com


学术兼职

国际微生物电化学技术协会(ISMET,2012至今)、美国化学协会(ACS,2010至今)、环境科学与工程教授协会(AEESP,2010至今)、国际水协(IWA,2016至今)会员

Environmental Science & Technology, Energy & Environmental Science, Angewandte Chemie, ES&T Letters, Journal of Power Sources, Bioresource Technology, Electrochemistry Communications, Bioelectrochemistry等20余部期刊审稿人


研究领域

地下水电化学修复

劣质地下水资源化

微生物电化学技术


研究概况

1.污染场地安全修复技术国家工程实验室开放基金,电场迁移-电阻加热相协同的原位修复体系构建研究,2018/01-2019/12,主持

2.国家自然科学基金面上项目,基于能量耦合的低渗透介质氯代烃电化学修复的体系建立和机制研究,2017/01-2020/12,主持

3.国家重点研发计划政府间国际科技创新合作重点专项,原位热修复技术在污染场地土壤修复中的应用,2016/12-2019/12,子课题负责人

4.12BET自主科研计划,地下水氯代烃氧化-矿化的电化学协同反应过程与体系研究,2015/10-2018/9,主持

5.环境模拟与污染控制国家重点联合实验室(12BET)2015年度自由探索课题,基于电化学的氧化-吸附协同去除地下水中砷的机制研究,2015/7-2017/6,主持

(课题组长期招收本科、硕士及博士生。有意者请将简历发至fangzhang@tsinghua.edu.cn。)


奖励与荣誉

入选中国科协“青年人才托举工程”,2015

入选12BET骨干人才支持计划,2015

Environmental Science & Technology Letters Excellence in Review Award, 2015

Journal of Power Sources Outstanding Reviewer Status, 2015

国家优秀自费职工奖学金,2011

美国化学协会环境化学学部优秀研究生,2011

美国化学协会环境化学学部优秀口头报告,2010

12BET优良本科毕业生, 2008

国家奖学金(12BET综合一等奖学金),2007

汇丰银行奖学金(12BET综合一等奖学金), 2006

12BET体育之星,2006

嘉里粮油奖学金(12BET综合二等奖学金), 2005

12BET优秀本科生,2005


学术成果

期刊文章

1.Yang, J.; Li, G.; Qian, Y.; Zhang, F.*, Increased soil methane emissions and methanogenesis in oil contaminated areas. Land Degradation & Development, 2018, in press. (IF 9.787)

2.Rahimi, M.; Straub, A. P.; Zhang, F.; Zhu, X.; Elimelech, M.; Gorski, C.; Logan, B. E., Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 2018, in press. (IF 29.518)

3.Zhang, H.; Wan, X.; Li, G.; Zhang, F.*, A three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation. Electrochimica Acta 2017, 250, 42-48. (IF 4.798)

4.Si, Y.; Li, G.*; Zhang, F.*, Energy-Efficient Oxidation and Removal of Arsenite from Groundwater Using Air-Cathode Iron Electrocoagulation. Environ. Sci. Technol. Lett. 2017, 4, (2), 71-75. (IF 5.308)

5.Sun, D.; Cheng, S.; Zhang, F.; Logan, B. E., Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. J. Power Sources 2017, 356, 566-571. (IF 6.395)

6.Rahimi, M.; Schoener, Z.; Zhu, X.; Zhang, F.; Gorski, C. A.; Logan, B. E., Removal of copper from water using a thermally regenerative electrodeposition battery. J. Hazard. Mater. 2017, 322, 551-556. (IF 6.065)

7.Jiang, J.; Li, G.; Li, Z.; Zhang, X.; Zhang, F.*, An Fe–Mn binary oxide (FMBO) modified electrode for effective electrochemical advanced oxidation at neutral pH. Electrochimica Acta 2016, 194, 104-109. (IF 4.798)

8.Zhang, F.; Li, G., China released the action plan on prevention and control of soil pollution. Frontier of Environmental Science & Engineering 2016, 10(4): 19 (IF 1.716)

9.Coulon, F.; Jones, K.; Li, H.; Hu, Q.; Gao, J.; Li, F.; Chen, M.; Zhu, Y.-G.; Liu, R.; Liu, M.; Canning, K.; Harries, N.; Bardos, P.; Nathanail, P.; Sweeney, R.; Middleton, D.; Charnley, M.; Randall, J.; Richell, M.; Howard, T.; Martin, I.; Spooner, S.; Weeks, J.; Cave, M.; Yu, F.; Zhang, F.; Jiang, Y.; Longhurst, P.; Prpich, G.; Bewley, R.; Abra, J.; Pollard, S., China's soil and groundwater management challenges: Lessons from the UK's experience and opportunities for China. Environment International 2016, 91, 196-200. (IF 7.088)

10.柯杭,张芳,李广贺,张旭;铁源对碳热合成磁性碳质吸附剂的影响,环境工程学报,2016


Prior to Joining THU

11.Zhang, F.; Liu, J.; Yang, W.; Logan, B.E., A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy & Environmental Science 2015, 8, 343-3249. (IF 29.518)

12.Zhang, F.; Labarge, N.; Yang, W.; Liu, J.; Logan, B.E., Enhancing the performance of low-grade thermal energy recovery in a thermally regenerative ammonia-based battery (TRAB) using elevated temperatures. ChemSusChem 2015, 8, 1043-1048. (IF 7.226)

13.Zhang, F.; Liu, J.; Ivanov, I.; Hatzell, M.C.; Yang, W.; Ahn, Y.; Logan, B.E., Reference and counter electrode positions affect electrochemical characterization of bioanodes in microbial electrochemical systems. Biotechnology and Bioengineering 2014, 111, 1931-1939. (IF 4.481)

14.Zhang, F.; Ahn, Y.; Logan, B.E., Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology 2014, 152, 46-52. (IF 5.651)

15.Zhang, F., Xia, X., Luo, Y., Sun, D.; Call, D., Logan, B.E., Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology 2013, 133, 74-81. (IF 5.651)

16.Zhang, F.; Chen, G.; Hickner, M.A.; Logan, B.E., Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes. Journal of Power Sources 2012, 218, 100-105. (IF 6.395)

17.Zhang, F.; Pant, D.; Logan, B.E., Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics 2011, 30, 49-55. (IF 7.780)

18.Zhang, F.; Merrill, M.D.; Tokash, J.C.; Saito, T.; Cheng, S.; Hickner, M.A.; Logan, B.E., Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors. Journal of Power Sources 2011, 196, 1097-1102. (IF 6.395)

19.Zhang, F.; Saito, T.; Cheng, S.; Hickner, M.A.; Logan, B.E., Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology 2010, 44, 1490-1495. (IF 6.198)

20.Zhang, F.; Cheng, S.; Pant, D.; Bogaert, G.V.; Logan, B.E., Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications 2009, 11, 2177-2179. (IF 4.396)

21.Liu, J.; Zhang, F.; He, W.; Yang, W.; Feng, Y.; Logan, B.E., A microbial fluidized electrode electrolysis cell for enhanced hydrogen production. Journal of Power Sources 2014, 271, 530-533. (IF 6.395)

22.Luo, X.; Zhang, F.; Liu, J.; Zhang, X.; Huang, X.; Logan, B.E., Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMC) using thermolytic solutions. Environmental Science & Technology 2014, 48, 8911-8918. (IF 6.198)

23.Yang, W.; Zhang, F.; He, W.; Liu, J.; Hickner, M.A.; Logan, B.E., Poly(vinylidene fluoride-co- hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells. Journal of Power Sources 2014, 269, 379-384. (IF 6.395)

24.Liu, J.; Zhang, F.; He, W.; Zhang, X.; Feng, Y.; Logan, B.E., Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. Journal of Power Sources 2014, 261, 278–284. (IF 6.395)

25.Ahn, Y.; Zhang, F.; Logan, B.E., Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. Journal of Power Sources 2014, 247, 655-659. (IF 6.395)

26.Yang, W.; He, W.; Zhang, F.; Hickner, M.A.; Logan, B.E., Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells. Environmental Science & Technology Letters 2014, 1, 416-420. (IF 5.308)

27.Zhang, X.; Pant, D.; Zhang, F.; Liu, J.; Logan, B.E., Long-term performance of chemically and physically modified activated carbons in microbial fuel cell air-cathodes. ChemElectroChem 2014, 1 (11), 1859-1866. (IF 4.136)

28.Ahn, Y.; Hatzell, M.C.; Zhang, F.; Logan, B.E., Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. Journal of Power Sources 2014, 249, 440-445. (IF 6.395)

29.Ren, L.; Ahn, Y.; Hou, H.; Zhang, F.; Logan, B.E., Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions. Journal of Power Sources 2014, 257, 454-460. (IF 6.395)

30.Liu, J.; Geise, G.M.; Luo, X.; Hou, H.; Zhang, F.; Feng, Y.; Hickner, M.A.; Logan, B.E., Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells. Journal of Power Sources 2014, 271, 437-443. (IF 6.395)

31.Xia, X.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B.E., Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells. ACS Applied Materials & Interfaces 2013, 5, 7862-7866. (IF 7.504)

32.Chen, G.; Zhang, F.; Logan, B.E.; Hickner, M.A., Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochemistry Communications 2013, 34, 150-152. (IF 4.396)

33.Luo, Y.; Zhang, F.; Wei, B.; Liu, G.; Zhang, R.; Logan, B.E., The use of cloth fabric diffusion layers for scalable microbial fuel cells. Biochemical Engineering Journal 2013, 73, 49-52. (IF 2.892)

34.Cusick, R.D.; Hatzell, M.C.; Zhang, F.; Logan, B.E., Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells. Environmental Science & Technology 2013, 47, 14518-14524. (IF 6.198)

35.Xia, X.; Tokash, J.C.; Zhang, F.; Liang, P.; Huang, X.; Logan, B.E., Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environmental Science & Technology 2013, 47, 2085-2091. (IF 6.198)

36.Wei, B.; Tokash, J.C.; Zhang, F.; Kim, Y.; Logan, B.E., Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochimica Acta 2013, 89, 45-51. (IF 4.798)

37.Luo, X.; Nam, J.-Y.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B.E., Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresource Technology 2013, 140, 399-405. (IF 5.651)

38.Hays, S.; Zhang, F.; Logan, B.E., Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources 2011, 196, 8293-8300. (IF 6.395)

39.Luo, Y.; Zhang, F.; Wei, B.; Liu, G.; Zhang, R.; Logan, B.E., Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources 2011, 196, 9317-9321. (IF 6.395)

 

发明专利

 

40.张芳,蒋晶,李广贺,张旭;纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用,201510080569.8

41.黄霞;王丽;梁鹏;魏锦程;夏雪;张芳;布鲁斯?洛根,含氮过渡金属微生物燃料电池催化剂及其制备方法。专利号:ZL201110021367.8